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Abstract
It is shown that the density functional theory (DFT) of soft matter is able
to capture, in a semi-quantitative way, the essential properties of the phase
behaviour in these complex systems. This is illustrated here for the case of
the fractionation and segregation of polydisperse fluids of spherical (colloidal)
particles and for the case of the self-assembling of monodisperse fluids of non-
spherical particles. Both homogeneous and inhomogeneous situations will be
considered and described within the same DFT.

1. Introduction

Since its first full-scale formulation in the seminal paper by Evans [1], the density functional
theory (DFT) of inhomogeneous fluids has been applied with success to a great variety of
physical situations. Most of the early applications of DFT to atomic fluids are well summarized
in [2]. Its application to soft matter systems is less well developed, although the early results
concerning, e.g., the freezing of hard sphere (HS) systems [3] and the superlattice formation
of binary HS systems [4] are of direct relevance to the crystalline phases of specially prepared
colloidal dispersions [5]. In the present paper we will review some ongoing work on the
application of the DFT approach to soft matter systems with a special emphasis on

(1) the fractionation resulting from some underlying polydispersity [6–8],
(2) the segregation resulting from some spatial inhomogeneity [9, 10] and
(3) the self-assembling into anisotropic and non-uniform phases resulting from an anisotropic

potential [11, 12].

The paper is organized as follows: in section 2, we consider the fluid–fluid and the fluid–
solid fractionation of spherical polydisperse colloids. The segregation between the small and
large colloidal spheres which occurs in a fluid–fluid interface or in a fluid under constant gravity
will be studied in section 3. Section 4 is devoted to the study of the nematic and columnar
phases of disc-shaped molecules. Our conclusions are gathered in the final section 5.
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2. Fractionation in polydisperse bulk fluids

Polydispersity is a common feature of many colloidal dispersions [5]. In some cases it
leads to intrinsically interesting phenomena, such as when studying the glass transition of
HS colloids [13], or the phase behaviour of mixtures of hard rods and hard plates [14]. In
many situations, however, it is a nuisance which obscures the phenomenon to be studied.
Consequently, much effort has been devoted to limit its presence and nowadays well prepared
colloidal dispersions are often considered to be monodisperse when compared to a theoretical
model [15]. One reason for this is that, until quite recently, there were only very few studies of
the phase behaviour of polydisperse systems. Although the basic equations were formulated
some 20 years ago by Salacuse and Stell [16], only weakly polydisperse systems, whereby
the width of the polydispersity distribution is treated as a smallness parameter, have been
studied [17]. More recently, a new step was taken by Sollich et al [18] who introduced a
‘projected free energy’ whereby the original infinite-dimensional problem is transformed into
a finite-dimensional one by annealing some of the moments of the polydispersity distribution.
Although this simplifies the treatment of the polydispersity at a formal level, it has some
drawbacks, the main one being that the coexistence (binodal) curves are inaccurate unless one
includes some of the higher order moments, in which case one loses the main advantage of
this method. Besides, it does not appear to be technically simpler than solving the equations
resulting from the full (non-projected) free energy. Therefore, in what follows, we will simply
use the full free-energy expression within a DFT framework for both the uniform and non-
uniform systems to be considered. The variational principle of DFT and the phase equilibrium
conditions lead then to exact equations which can be solved numerically to give either the
coexistence curves to be considered here or the density profiles to be considered in the next
section.

2.1. Fluid–fluid fractionation

To be specific, we consider an equilibrium system of spherical (colloidal) particles whose radii
Rσ are distributed continuously within some interval, Rmin < Rσ < Rmax , centred on the
reference value, R0, usually taken to be the mean radius. When Rmax − Rmin → 0, the system
is said to be monodisperse whereas it is polydisperse whenever Rmax − Rmin > 0. The initial
distribution of radii can then be characterized by its normalized probability distribution, h0(σ ),
where σ = Rσ /R0 is the dimensionless polydispersity variable of ‘species σ ’ of the continuous
mixture. A specific situation will then usually be characterized by its polydispersity index I ,
or by

√
I − 1. Here I = m2/(m1)

2, with mn being the nth moment of the size distribution, so
that I = 1 refers to a monodisperse situation. If the initial situation corresponds to a uniform
fluid phase, the average number density of particles of species σ will be ρ0(σ ) = ρ0h0(σ ),
with ρ0 the overall average number density. When the temperature is lowered it is often found
that the initial fluid will phase separate into two fractions or daugther phases corresponding to
ρ1(σ ) = ρ1h1(σ ) and ρ2(σ ) = ρ2h2(σ ). Such a fractionation combines thus some features of
a fluid–fluid (say liquid–vapour) phase separation (e.g. ρ1 �= ρ2 �= ρ0) with some features of
a demixing transition (e.g. h1(σ ) �= h2(σ ) �= h0(σ )). On further lowering of the temperature
one may obtain more than two fractions [7] but for the sake of illustration we will limit our
analysis here to two-phase fractionations only. The major difficulty of fractionation studies
results from the coexistence of different size distributions. When the system is only weakly
polydisperse (I − 1 � 1), simple fractionation rules can be found [19], but these have been
shown [20] to be of limited value only. Some authors [21] have avoided the problem by
imposing h1(σ ) = h2(σ ) = h0(σ ), but this is generally untrue.
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It is fairly straightforward [6] to study polydisperse fluids within the DFT formalism. To
this end one can view the system as being inhomogeneous in species space and consider its
density functional, F[ρ], to be a functional of ρ(σ). The chemical potential µ(σ, [ρ]) of
species σ can then be obtained as the functional derivative with respect to ρ(σ) of the density
functional per unit volume (V ), f [ρ] = F[ρ]/V :

µ(σ, [ρ]) = δ f [ρ]/δρ(σ); (1)

whereas the pressure p[ρ] can be obtained from

p[ρ] =
∫

dσρ(σ)µ(σ, [ρ]) − f [ρ]. (2)

The equilibrium conditions for the two fractions, ρ1(σ ) and ρ2(σ ), namely, µ(σ, [ρ1]) =
µ(σ, [ρ2]) and p[ρ1] = p[ρ2], can be shown [6] to imply (β = 1/kB T )

h1(σ ) = h0(σ )
ρ2 exp(β{µex(σ ; [ρ2]) − µex(σ ; [ρ1])})

x2ρ1 + x1ρ2 exp(β{µex(σ ; [ρ2]) − µex(σ ; [ρ1])}) (3)

where x1(x2) is the fraction of particles in phase 1 (or 2). They are related to the densities by
the Lever rule: x1 = ρ1

ρ1−ρ2

ρ0−ρ2

ρ0
and x2 = 1 − x1. Having obtained h1(σ ) from equation (3),

the particle number conservation gives

h2(σ ) = ρ0(ρ2 − ρ1)

ρ2(ρ0 − ρ1)
h0(σ ) +

ρ1(ρ0 − ρ2)

ρ2(ρ0 − ρ1)
h1(σ ) (4)

where µex(σ, [ρ]) is the excess part of µ(σ, [ρ]). To solve equations (1)–(3) we need to know
the explicit expression of h0(σ ) and f [ρ]. For h0(σ ) we have taken here the widely used
Schulz–Zimm distribution, which will be used throughout:

h0(σ ) = αα(1 + σ)α−1e−α(1+σ )/�(α) (5)

where I = 1 + 1
α

and �(α) is the Euler gamma-function. For illustrative purposes we took
f [ρ] to be of the following van der Waals (vdW) form:

f [ρ] = kB T
∫

dσρ(σ)

{
ln

(
�3(σ )ρ(σ )

E[ρ]

)
− 1

}
+

1

2

∫
dσ

∫
dσ ′ V (σ, σ ′)ρ(σ )ρ(σ ′) (6)

where �(σ) is the thermal de Broglie wavelength resulting from the kinetic energy, E[ρ] the
vdW excluded volume resulting from the repulsions

E[ρ] = 1 − 1

ηm

∫
dσ v(σ)ρ(σ ) (7)

where v(σ ) = σ 3v0, ηm = ρmv0 with v0 = 4π
3 (R0)

3 being the volume of the reference particle
of radius R0 and ρm is the maximum density of the fluid phase. Finally, in equation (6), V (σ, σ ′)
represents the cohesion energy density resulting from the attractions. Since there is at present
no experimental information on how V (σ, σ ′) depends on the polydispersity variables we
have taken it to be of the simple form V (σ, σ ′) = −ε0σσ ′v0(σ + σ ′)3, where ε0 sets the
energy scale. Polydispersity favours phase separation, by enlarging the two-phase region,
and modifies many of its features [6]. Here we will focus our attention on the fractionation
properties. An example of a solution of equations (3), (4) for h0 given by equation (5) with
α = 55 or I = 1.018, ρ0v0 = 0.33, ηm = 1 and f [ρ] by equations (6)–(7) with kB T/ε0 = 1
is given in figure 1. It is seen that one of the fractions (the low density or ‘vapour’ phase 1,
ρ1v0 = 0.11) is enriched in small (σ < 1) particles (m1(1) = 0.93 < 1) whereas the other
fraction (the high density or ‘liquid’ phase 2, ρ2v0 = 0.60) is enriched with large (σ > 1)
particles (m1(2) = 1.02 > 1) relative to the original (parent) phase (ρ0v0 = 0.33, m1(0) = 1).
Here, mn(p) denotes the nth moment of the distribution h p(σ ) of the phase p. Note also
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Figure 1. Fractionation of an initial polydisperse fluid phase (full curve) of density η = 0.33,
temperature kB T/ε0 = 1 and a (Schulz–Zimm) size distribution of polydispersity index I = 1.018
into a low density fraction (dotted curve) enriched in small particles and a high density fraction
(dot–dashed curve) enriched in large particles. Shown are the normalized size distributions h(σ )

versus the reduced particle radius σ .

that the distributions of the two fractions have a smaller variance (m2(1) − m2
1(1) = 0.0051,

m2(2)− m2
1(2) = 0.0096) than the parent phase (m2(0)− m2

1(0) = 0.02) leading to a reduced
overall polydispersity (I (1) = 1.016, I (2) = 1.017) of the fractions. Repeated fractionation
is indeed a standard experimental technique to produce less poydisperse samples.

2.2. Fluid–solid fractionation

The phenomenon of bulk phase fractionation is however not limited to fluid phases only. Upon
freezing a bulk fluid will generally fractionate into two bulk fractions with different structures,
different densities and different size distributions. Because of the numerical difficulty of a
simultaneous treatment of the spatial and species non-uniformities this problem has however
not yet been addressed theoretically. Indeed, in their seminal work on polydisperse HS colloids,
Barrat and Hansen [22] only performed a stability analysis for a specific crystal structure
and found that the crystal phase becomes unstable above a limiting polydispersity threshold.
This result was confirmed later by simulations [23], while in a more recent theoretical
investigation [21] fractionation was neglected (e.g. by imposing h1(σ ) = h2(σ ) = h0(σ ))
altogether. The unavoidable presence of fractionation in polydisperse systems can however be
illustrated here by adapting the above DFT to HS systems. To this end we put V (σ, σ ′) = 0
in equation (6) and describe hence the HS fluid (phase 1) by

f1[ρ] = kB T
∫

dσρ(σ)

{
ln

(
�3(σ )ρ(σ )

E1[ρ]

)
− 1

}
(8)
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Figure 2. Fractionation of a polydisperse HS fluid (full curve) of density η0 = 0.53, polydispersity
index I = 1.002 into a fluid (dotted curve) and a solid (dot–dashed curve) fraction enriched,
respectively, with small and large particles (see also figure 1).

with E1[ρ] given by equation (7). Within the same vdW excluded volume approach, the HS
solid (phase 2) can then be similarly described by

f2[ρ] = kB T
∫

dσρ(σ)

{
ln

(
�3(σ )ρ(σ )

E2[ρ]

)
− 1

}
(9)

where E2[ρ] can be obtained from a free-volume theory as [24]

E2[ρ] =
{

1 −
(

1

ηcp

∫
dσ v(σ)ρ(σ )

)1/3}3

(10)

with ηcp = ρcpv0 the maximum packing fraction of the solid phase. Equation (9) will provide,
of course, only a crude approximation of the solid since it sidesteps the intrinsic lattice-
periodic non-uniformity of the density in a solid, the latter being described here only in terms
of its spatially averaged density ρ(σ). Nevertheless, the difference in functional form of the
excluded volume in the fluid and solid phases (compare E1[ρ] and E2[ρ]), and therefore in the
underlying equations of state, is sufficient to adequately locate the HS fluid–solid transition
in the monodisperse HS system [24]. Note, however, that while when only fluid phases are
considered the parameter ηm which appears in equation (7) is immaterial, since it only sets
the density scale; this is no longer the case when the fluid competes with the solid. In such
a situation it was found [24] that taking, e.g., ηm = 1/8 + ηcp/2 leads to a reasonable HS
fluid–solid transition in the monodisperse case. We will hence adopt the same value for ηm

here. Finally, the value of ηcp could be influenced by the polydispersity of the solid but to
avoid too great a complexity we will adopt here the value ηcp = π/3

√
2, corresponding to a

monodisperse close-packed lattice structure. Under these conditions a polydisperse HS fluid
of initial density η0 = 0.53 and small initial polydispersity I = 1.002 (namely α = 500 in
equation (5)) will fractionate into a polydisperse fluid and solid as shown in figure 2. The fluid
(phase 1) has a lower density (η1 = 0.49), is enriched in small particles (m1(1) = 0.987) and
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has a smaller variance (m2(1)−m2
1(1) = 8.3×10−4) and a smaller polydispersity (I1 = 1.0017)

than the parent phase, whereas the solid (phase 2) has a higher density (η2 = 0.59), is enriched
in large particles (m1(2) = 1.0178) and has a smaller variance (m2(2)−m2

1(2) = 1.98×10−3)
and a smaller polydispersity (I2 = 1.0018) than the initial phase. When the polydispersity is
increased, the illustrated accumulation of the larger particles into the solid phase will ultimately
destabilize the latter. Note however that the solid phase may prevent this by fractionating into
two solid phases of lower polydispersity.

3. Segregation in inhomogeneous polydisperse fluids

In section 2 we only considered situations where the density depends on only one variable,
namely ρ(σ). As soon as we take into account the presence of an external field such as gravity,
the latter will break the translational invariance of the system and its density will become space
dependent, namely ρ(r, σ ). If �(r, σ ) represents the potential from which the external field
derives, then the chemical potential µ(σ, [ρ]) of the inhomogeneous system of density ρ(r, σ )

will be given by

µ(σ) = �(r, σ ) +
δF[ρ]

δρ(r, σ )

∣∣∣∣
T

. (11)

This Euler–Lagrange equation expresses the constancy of the chemical potential throughout
the inhomogeneous equilibrium system. To solve equation (11) for the four-variable function
ρ(r, σ ) constitutes, even for the simple density functionals F[ρ] considered in section 2, a
formidable numerical problem. Nevertheless, when the external field has a fixed direction and
the translational invariance is broken only along the z-axis so that the density will depend only
on two variables, namely ρ(z, σ ), one can solve equation (11) for a few simple situations as
we now show.

3.1. Polydisperse fluid with a planar interface

Consider again the polydisperse vdW fluid studied in section 2.1 and assume that T is such
that the system fractionates into two fluid fractions. The external gravity field will spatially
separate the two fractions according to their density and the system will build up an interface
sandwiched between two bulk phases. Under such circumstances the influence of the external
field can be replaced by an appropriate boundary condition. For sufficiently weak fields we
can indeed now solve equation (11) without the external field and look for a solution, say
ρ(z, σ ), which asymptotically (i.e. when z → ±∞) matches the densities (say ρ±(σ )) of the
two coexisting bulk phases. Moreover, since the chemical potential of the two bulk phases is
known (cf section 2.1) and the chemical potential of the system has to remain constant, we can
eliminate the latter from equation (11) and, as shown elsewhere [9], end up with two equivalent
integral equations of the form

ρ(z, σ ) = A±
0 (z)M±(z, σ ) (12)

where A±
0 (z):

A±
0 (z) = 1 − η0(z)

1 − η±
0

exp

{
1

1 − η±
0

− 1

1 − η0(z)

}
(13)

involves only the zeroth-order σ -moment of ρ(z, σ ), namely η0(z) = v0
∫

dσ ρ(z, σ ) and
η±

0 = η0(z = ±∞), whereas M±(z, σ ) reads

M±(z, σ ) = ρ±(σ ) exp

[
σ

∫ ∞

−∞
dz′ β V1(|z − z′|){η±

1 − η1(z
′)}

]
(14)
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Figure 3. Reduced density profiles, η(z∗, σ ) = v0ρ(z∗, σ ), versus the reduced distance to the
interface, z∗ = z/R0, of a planar fluid–fluid interface for σ = 1.25 (dotted curve), 1 (solid curve),
0.8 (dash–dash curve) and 0.65 (dot–dash curve). The initial density and polydispersity index
correspond to η0 = 0.484 and I = 1.067, respectively, while the temperature is kB T/ε0 = 0.85.
Note the segregation of the small (σ < 1) particles towards the interface.

where η1(z) = v0
∫

dσ σρ(z, σ ), η±
1 = η1(z = ±∞), ρ±(σ ) = ρ(z = ±∞, σ ) and V1(|z|)

is the lateral interaction potential [9] (namely, V1(z) ∝ ∫
dx

∫
dy V (r)), which for simplicity

we took to be Gaussian. Note that in the above, we also simplified the dependence of F[ρ]
on the polydispersity by putting v(σ ) = v0 and V (σ, σ ′) = σσ ′V (1, 1) in the vdW model of
section 2.1, since this does not alter qualitatively the phase coexistence results while simplifying
the numerical treatment [6]. In figure 3 we show some results for the ρ(z, σ ) obtained in this
way. It is seen that while the large (σ > 1) particles have a density profiles which smoothly
interpolates between the two bulk values (ρ−(σ ) and ρ+(σ )) the small (σ < 1) particles
segregate out of the two bulk phases and accumulate in the interfacial region.

3.2. Sedimentation profiles

We now consider a polydisperse fluid in a confined geometry (0 < z < ∞) under the influence
of an external gravity field corresponding to �(z, σ ) = m(σ )gz, where m(σ ) is the mass
of species σ and g is the gravity constant. Here the resulting sedimentation profile will
thus again depend only on two variables, namely ρ(z, σ ). The boundary condition is now
ρ+(σ ) ≡ ρ(z = +∞, σ ) = 0, whereas the particle number conservation implies for each σ

lim
L→∞

1

L

∫ L

0
dz ρ(z, σ ) = ρ0(σ ) (15)

where ρ0(σ ) is the initial size distribution, assumed to be known (cf equation (5)). Equation (11)
implies now

ρ(z, σ ) =
(

(1 − η0(z))

�3(σ )

)
exp

[
βµ(σ) − β�(z, σ ) − η0(z)

1 − η0(z)
− 8βε0ση1(z)

]
(16)
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Figure 4. Reduced density profiles, η(z∗, σ ) = v0ρ(z∗, σ ), versus the reduced distance,
z∗ = z/R0, of a polydisperse fluid confined to the z∗ � 0 half-space under the influence of a
constant gravity field for σ = 1.25 (full curve), 0.75 (dot–dash curve) and 0.65 (dash–dash curve).
The initial density and polydispersity index correspond to ρ0 v0 = 0.087 and I = 1.04, respectively,
while the temperature is kB T/ε0 = 1.5 and m0gR0/kB T = 0.1. Note the segregation of the small
(σ < 1) particles towards the intermediate heights.

where ηn(z) = v0
∫

dσ σ nρ(z, σ ) with n = 0, 1, and ε0 sets the energy scale of the attractions.
To obtain equation (16) we have again simplified the polydispersity dependence of the vdW
model of section 2.1 by taking v(σ ) = v0 (hence m(σ ) = m0) and V (σ, σ ′) = σσ ′V (1, 1).
We have moreover localized the density functional F[ρ] by taking the lateral interaction
V1(|z|) to be a Gaussian of zero width. Such a local density approximation is known to
be reasonable provided mg R0 � kB T , i.e. T large enough [26]. Substitution of the ρ(z, σ )

of equation (16) into (15) fixes in principle µ(σ) but in order to keep the problem tractable,
we have approximated µ(σ) by

βµ(σ) = ln(�3(σ )ρ0(σ )) +
n∑

i=0

ai(σ − 1)i (17)

and determined the n coefficients ai (in practice we took n = 3) by minimizing
|limL→∞(1/L)

∫ L
0 dz ρ(z, σ ) − ρ0(σ )| (cf equation (15)). Solving equations (15)–(17)

iteratively [10] one obtains the profiles shown in figure 4 (with equation (15) being satisfied
within 10−4). It is seen that while the large (σ > 1) particles have a monotonically decreasing
density profile, as expected for a sedimentation experiment, the small (σ < 1) particles have
a non-monotonic profile exhibiting a maximum in the region where the density profile of the
large particles exhibits its largest gradient. In other words, the small particles are partially
expelled from the bottom of the vessel by the large particles, a non-monotonic feature which
results from the delicate balance between the excluded volume effects and those due to the
attractions and the external field. We notice that local size segregation has also been predicted
for polydisperse HS fluids near a wall [27].
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4. Self-assembling into liquid-crystalline phases of monodisperse discotic molecules

Whereas in the previous sections 2 and 3 we used DFT methods to study (colloidal) systems
composed of spherical particles with a size polydispersity, in the present section we will
consider the application of DFT methods to the study of monodisperse (molecular) systems
of non-spherical particles. At the formal level, there exists a close relationship between these
two types of system because in both cases the one-particle density depends on, besides the
position r of the particle, one extra variable. For the colloidal systems considered above this
was the polydispersity variable σ related to the size of the spherical particles (cf ρ(r, σ ))
whereas here it is the orientation of the non-spherical particles, say ρ(r,u), if u denotes a unit
vector along, say, the symmetry axis of a uniaxial centro-symmetric molecule. Indeed, as is
well known since Onsager’s work [28], a monodisperse system of non-spherical particles can
also be viewed as a system of ‘spherical’ particles with a polydispersity in their orientations
(u). This analogy is however not complete because here u is a vector while σ is a scalar and,
more fundamentally, the size distribution ρ(σ) is monitored by the initial parent-phase size
distribution (ρ0(σ )) whereas here the angular distribution ρ(u) has to minimize the free-energy
functional (usually within a given class of trial functions, as done below). Nevertheless, this
analogy is very useful because it allows one to transpose easily theoretical treatments from
one system to another, as we now illustrate (see also [11]).

4.1. The density functional

For a system of identical uni-axial centro-symmetric molecules whose number density is
ρ(r,u), with r denoting the position of the centre of symmetry and u being a unit vector
(u2 = 1) along the symmetry axis, the free-energy density functional per unit volume, f [ρ],
can be split into an ideal and an excess part, with the former given by

fid [ρ] = kB T
∫

dx

V
ρ(x){ln(�3ρ(x)) − 1} (18)

where x = {r,u} and dx = du dr, with
∫

dr = V , and
∫

du = 1, or in spherical coordinates,
u(θ, φ), du = 1

4π
dφ dθ sin θ . If the molecules interact via a pair-potential, V (x1,x2), we

can approximate the excess term, fex [ρ], by first splitting this potential into an attractive (A)
and a repulsive (R) contribution, V (x1,x2) = VA(x1,x2) + VR(x1,x2), and evaluating the
contribution of VA(x1,x2) to fex [ρ] in a vdW mean-field manner:

f A
ex [ρ] = 1

2V

∫
dx1

∫
dx2 ρ(x1)ρ(x2)VA(x1,x2)e−βVR(x1,x2) (19)

and the contribution of VR(x1,x2) to fex [ρ] in the following generalized Onsager fashion:

f R
ex [ρ] = kB T

V

∫
dr ρ(r)�(v0ρ̄(r)) (20)

adapted from [29]. Note that in equation (20), ρ(r) and ρ̄(r) denote, respectively, the
orientationally averaged density, ρ(r) = ∫

du ρ(r,u), and the effective density

ρ̄(r) = 1

2B2ρ(r)

∫
dx1 δ(r − r1)

∫
dx2 ρ(x1)ρ(x2)(1 − e−βVR(x1,x2)) (21)

the latter being constructed in such a manner that at low density equation (20) will yield the
exact second virial coefficient B2:

B2 = 1

2V

∫
dx1

∫
dx2 (1 − e−βVR(x1,x2)) (22)
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instead of its Carnahan–Starling approximation (4v0), namely

�(η) =
(

B2

v0
− 4

)
η + η

(4 − 3η)

(1 − η)2
(23)

where η = v0ρ̄(r) with v0 being the volume of a molecule (see [11] for details).

4.2. Discotic molecules

The density functional of equations (18)–(20) can be used for theoretical studies of the phase
behaviour of both prolate (rodlike) and oblate (disclike) non-spherical molecules. Such studies
always face two non-trivial technical problems. First, the interaction potential between two
non-spherical molecules, V (x1,x2) ≡ V (r1 −r2,u1,u2), is a complicated anisotropic object
depending, as well as on the distance r12, on the relative orientation of the three vectors
{r12,u1,u2}. Very little is known about such potentials. In what follows we will use the
Gay–Berne potential [30] as a model potential for such molecules. This corresponds to using
a (shifted) Lennard-Jones potential for each relative orientation, with an amplitude and range
which continuously change when the relative orientation is changed. Since this Gay–Berne
potential can be formulated in analytic form its use in conjunction with equations (18)–(20) is
indicated because the second, and main, problem raised by these equations concerns the fact
that, e.g., equation (19) involves a tenfold integral. Such high order integrals are unavoidable
here, because of the increased number of degrees of freedom of the non-spherical molecules,
and this turns the minimization of the total density functional into a formidable numerical task.
To make this program realizable we will restrict ourselves here to discotic (or oblate) molecules
and parametrize ρ(r,u) in terms of a small number of well chosen order parameters.

4.3. Order parameters

Besides the uniform and isotropic phase (I), for which ρ(r,u) is independent of both r and u,
a system of non-spherical molecules can, in principle, exhibit a bewildering variety of partially
ordered or liquid crystal phases and also several crystalline phases [28]. In what follows we
will restrict ourselves to only two liquid-crystal phases, the nematic phase (N) and the columnar
phase (Co). The uni-axial nematic phase is a uniform phase for which ρ(r,u) takes on the
form ρh(u · n), where ρ is the system’s average number density and h(u · n) the normalized
(
∫

du h(u · n) = 1) angular distribution of the orientation of the molecule (u) relative to the
nematic director n (n2 = 1). Such phases are known to exist for both oblate and prolate
molecules. To describe them we will use a simple Maier–Saupe order parameter γ by taking
h(u · n) ∝ exp{γ P2(u · n)}, where P2(x) is the second Legendre polynomial describing
the quadrupolar order characteristic of the N-phase. The columnar phase plays, for oblate
molecules, a role similar to that of the smectic phase for prolate molecules. Several types of
Co-phase can be found [31], but here we will restrict ourselves to a phase for which ρ(r,u)

can be approximated as ρh(u · n)g(R), where R are the coordinates in the two directions
perpendicular to n and g(R) represents a set of Gaussian peaks forming a two-dimensional
triangular lattice. In other words, in this Co-phase the nematically ordered (γ �= 0) discotic
molecules moreover form columns, with the columnar axis parallel to the director n, the set
of columnar axes forming a triangular lattice, while the molecules are uniformly distributed
along these columns. The minimal set of order parameters retained here consists thus of γ and
the inverse width of the Gaussians describing the localization of the discotic molecules along
the columns.
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Figure 5. The reduced density, ρ∗, of the nematic (N)
and isotropic (I) phases for an I–N coexistence of discotic
molecules of aspect ratio κ for 0.2 < κ < 1. The
black dot represents a simulation result [12] for which
the density gap (ρ∗

N − ρ∗
I ) was not resolved. Note that

for κ larger than a threshold value (here κ ≈ 0.88) the
N-phase becomes metastable.

Figure 6. Example of an I–N–Co phase diagram of
discotic molecules in the reduced pressure (p∗)-reduced
temperature (T ∗) plane for 1 < T ∗ < 5. Note the
I–N–Co triple point (black dot) below which the N-phase
becomes metastable.

4.4. Phase transitions

To illustrate the results obtained from equations (18)–(20) we first consider the I–N transition
in the absence of the Co-phase. As is well known, the anisotropic N-phase can exist only for
non-spherical molecules. If we characterize the aspect ratio of a uni-axial centro-symmetric
molecule by κ (0 < κ < 1 for oblate molecules) it is seen from figure 5 that the I–N transition
is always first order with a density gap, �ρ = ρN − ρI , which decreases when κ increases
(i.e. when the molecules become more spherical) until a maximum value of κ is attained above
which the N-phase is no longer stable. Next, when the Co-phase is allowed to compete with
the I- and N-phases it is found (see figure 6) that the resulting phase diagram exhibits an I–N–
Co triple point, below which the N-phase is metastable and only the I–Co transition remains,
whereas above this triple point the I–N transition is followed by a N–Co transition. This
theoretical scenario is in qualitative (but not quantitative) agreement with recent simulation
results [12].

5. Conclusions

We have shown that DFT is an adequate and flexible tool to describe the phase behaviour
of simple models of soft matter systems. We have considered both polydisperse systems of
spherical colloidal particles and monodisperse systems of non-spherical,disclike, particles. On
the basis of a simple vdW-like model we have studied the fractionation of an initial polydisperse
bulk fluid phase into two polydisperse fractions,one fluid and the other either fluid or solid. The
non-trivial segregation of the small particles in a spatially non-uniform polydisperse fluid has
been illustrated for the case of a fluid–fluid interface and for a fluid in a external gravity field.
Finally, it has been shown that a simple DFT can describe the phase behaviour of monodisperse
systems of disc-shaped particles in qualitative agreement with computer simulations.
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